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An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evo-
lution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond
a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection.
The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the
reflected ions. The solution relates parameters of the entire shock structure, such as the maximum
and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach
number, to the number of reflected ions. This relation is resolvable for any given distribution of the
upstream ions. In this paper, we have resolved it for a simple “box” distribution. Two separate
models of electron interaction with the shock are considered. The first model corresponds to the
standard Boltzmannian electron distribution in which case the critical shock Mach number only
insignificantly increases from M ~ 1.6 (no ion reflection) to M ~ 1.8 (substantial reflection). The
second model corresponds to adiabatically trapped electrons. They produce a stronger increase,
from M ~ 3.1 to M =~ 4.5. The shock foot that is supported by the reflected ions also accelerates
them somewhat further. A self-similar foot expansion into the upstream medium is described ana-
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lon-acoustic shocks with self-regulated ion reflection and acceleration

lytically. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945649]

I. INTRODUCTION

Collisionless shocks emerged in the 1950s and 1960s of
the last century as an important branch of plasma physics
(see Refs. 20, 36, 38, and 40 for review) and have remained
ever since. Meanwhile, new applications have posed new
challenges to our understanding of collisionless shock mech-
anisms. Particle acceleration in astrophysical settings, pri-
marily studied to test the hypothesis of cosmic ray origin in
supernova remnant shocks (see, e.g., Refs. 5, 6, and 29 for
review), stands out, and the collisionless shock mechanism is
the key here. Among recent laboratory applications, a laser-
based tabletop proton accelerator is frequently highlighted as
an affordable compact alternative to expensive synchrotron
accelerators.”' %8

The goal of this article is twofold. First, we will obtain a
self-consistent analytic solution for the electrostatic structure of
an ion-acoustic collisionless shock with the Mach numbers
beyond a critical value M = M, ~ 1.6, for Boltzmannian elec-
trons, and M, ~ 3.1, for adiabatically trapped electrons. As
these two models predict quantitatively different critical Mach
numbers, a short digression into the choice between them is in
order.'®

First of all, one distinguishes between electrons freely
passing the soliton (or shock structure) and those captured
into its potential. The distribution of the first category of
electrons is assumed to be Maxwellian in both Boltzmannian
and adiabatic models, as these electrons originate from
regions not related to the soliton (e.g., laser-heated plasma,
acting as a piston that drives the soliton/shock). The distribu-
tion of the second category depends on whether or not they
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intermix with the first category over the evolution time of
the trapping potential, 7. The trapping region in velocity
space has a width AV, ~ \/ed/m, where ¢ is the soliton or
shock potential. On the other hand, electrons change their ve-
locity due to collisions over time © by AVey ~ /vtVr,
where v is the electron collision frequency, and Vr, is the
thermal velocity. If AV, > AV, then the Maxwellian dis-
tribution spreads over the region of trapped particles in phase
space. The Boltzmannian model applies to all electrons in
this case. If the opposite is the case, AV, < AVy,, then the
trapped particles, having closed orbits, sustain their distribu-
tion, generally depending on their trapping history.
Therefore, they are more accurately described by the adia-
batic trapping model, while the free electrons remain
Maxwellian. Note that the collisions may be both binary or
“effective,” i.e., associated with the instabilities of trapped
electrons (e.g. Ref. 27).

The above models for electron distribution produce two
different forms of electron density distribution in terms of
the wave potential 7n,(¢). One form is a Boltzmannian, 7,
=npexp (e /T,) which, as we pointed out, yields M, ~1.6.%*
The other form corresponds to adiabatically trapped elec-
trons with a flat distribution in the wave potential. In
this case, M, ~ 3.1."° Depending on the practical situation,
either model can be used. As discussed above, the
Boltzmannian requires a Maxwellian distribution for elec-
trons trapped in the potential wells (in analogy with baromet-
ric formula). One can expect such scenario in the case when
a higher density plasma expands into a lower density
(upstream) region. A suitable example found in the conven-
tional gas dynamics is a shock tube, in which the shock is
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generated by breaking up a diaphragm, which was separating
the tube sections with different gas densities. By contrast,
the adiabatic trapping can be expected in a piston tube, in
which the piston moves into an initially uniform medium.
Therefore, it models the shocks generated in the pulsed
laser-plasmas more accurately. Under these circumstances,
the production of reflected ions can be considered as the
laser-driven acceleration. It becomes more energy-efficient
at M > M., while producing almost monoenergetic ions over
an extended time interval.

At M > M., the shock reflects some of the upstream
ions. So the second goal of this paper is to study the dynam-
ics of these ions, including their further acceleration. A self-
similar simple wave solution for electrostatic potential in a
foot region ahead of the shock will be obtained selfconsis-
tently with the incident and reflected ion dynamics. We will
show that an additional drop in the foot electrostatic poten-
tial critically affects the ion reflection from the main part of
the shock. So, unlike most of the earlier analyzes treated the
ion reflection using the test particle approximation, e.g.,
Refs. 12 and 32, we incorporate it into the global shock
structure. This study is relevant to the electrostatic shock
propagation in laser-produced plasmas, especially to the
problem of generation of monoenergetic ion beams, ion
injection into the diffusive shock acceleration (DSA) in
astrophysical shocks, and other shock-related processes in
astrophysical and space plasmas.

In studying collisionless shocks, it is crucial to identify
the shock-supporting linear wave mode and to describe its
nonlinear evolution, appropriate for the shock environment.
In non-isothermal plasmas, with the electron temperature
much higher than the ion temperature, 7, > T;, a nonlinear
Korteweg—de Vries (KdV) equation adequately describes the
ion-acoustic waves as long as the nonlinearity remains weak.
Of course, the KdV equation is famous for its soliton solu-
tion, one of the most remarkable mathematical construction
widely used in physics. In plasmas, the solitons emerge
when neither collisional nor Landau damping is present. The
ion-acoustic solitons, in particular, are the building blocks of
collisionless shock waves at T, > T;. Most lucidly, they
emerge from a solution pseudopotential, for an arbitrarily
strong nonlinearity, thus comprising the limiting case of a
cnoidal wave solution with an infinite period.*® This solution
can also be interpreted as the uppermost “energy level” in a
continuum of bound states in the pseudopotential, whereas
the lower energy states correspond to the periodic (cnoidal)
waves. The usage of pseudopotential also provides informa-
tion about a soliton wave-train that forms when even a small
“damping” leads to the particle energy change in the pseudo-
potential which in reality corresponds to the inner structure
of the shock front.*®> The underlying mechanism here is the
nonlinear Landau damping. Just a few ions upstream
reflected by the electric potential of the first soliton will
result in such damping. Then, by the “nonlinear saturation”
effect, there are no more “resonant” ions to interact with the
soliton train past the leading soliton.

In the absence of resonant ions upstream, the first soliton
breaks down at M > M, ~ 1.6 (for cold upstream ions and
Boltzmannian electrons). The solution ceases to exist beyond

Phys. Plasmas 23, 043105 (2016)

this point, as there is no proper “energy level” in the pseudo-
potential. This solution disappearance was thought to be the
point of “overturning of the shock front” and the end of the
so-called “laminar” regime of ion-acoustic collisionless
shocks. However, the results of this paper prove otherwise.
Namely, by including the reflected ions into the shock struc-
ture, we have found the laminar solution to continue beyond
M = M.,! More precisely, we found that when ions begin to
reflect from the soliton tip at M = M;=<M,, the classical sin-
gle soliton solution bifurcates into a more complex structure.
It comprises (i) the first soliton, (ii) the infinite periodic
wave train downstream of it, and (iii) the foot occupied by
the reflected ions. The front edge of the foot undergoes self-
similar spreading in a comoving reference frame of reflected
ions. This solution continues up to M = M, = M..

At the second critical Mach number M,, almost all inci-
dent ions reflect, so the foot potential raises to increase the total
shock Mach number significantly above M.. For the cold
upstream ions, T; < T,, M approaches M., that is M| = M.

—O(/T/T,). while My ~ \/M? + (1 — 1/4M2) "In(1 + ),
where « is the fraction of reflected ions. Note that M, ~ 1.8
for « =1 and Boltzmannian electrons. The case of adiabati-
cally trapped electrons, in which M, ~ 3.1, gives a consider-
ably higher Mach number, M;~4.5. The same
pseudopotential technique38 also recovers the shock profile,
although by introducing two separate pseudopotentials @™ ()
= 4me [(n, — n;")d¢, used for the plasma upstream and down-
stream of the leading soliton (1" # n; due to the ion reflec-
tion). Here, ¢ denotes the shock electrostatic potential.

Within the range between the two critical points
M, <M < M,, the only time-dependent part of the solution
is near the leading edge of the reflected ion population. They
support a pedestal upstream of the leading soliton on which it
rests. The reflected ions escape upstream with double the
shock speed in the pedestal reference frame, Fig. 1. Their fur-
ther fate is determined by a relatively slow spreading of the
initially sharp front edge. By even a small velocity dispersion,
ions with higher initial velocity undergo additional electro-
static acceleration by passing through the shock pedestal. This
process is described analytically as a self-similar solution,
which also yields the maximum velocity of reflected ions.

The paper is organized as follows. In Sec. II, we discuss
the shock model. Sec. III describes the main part of the
shock transition that forms in place of the parent soliton after
it has reflected a first few ions. Sec. IV presents a self-similar
solution for the shock precursor supported by reflected ions.
We conclude with a Discussion in Sec. V.

Downstream ¢ Upstream

(Pmax
/VCP\/ 0 X

FIG. 1. Electrostatic potential of the shock structure consisting of a pedestal,
leading soliton, and trailing wave.
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Il. THE SHOCK MODEL

The analytic solution for an ion-acoustic soliton was first
obtained for the Boltzmannian electron distribution®® and
extended later to the case of adiabatically trapped elec-
trons.'® Tons were assumed to be cold in both instances,
which strictly limited the maximum Mach numbers to M.
~ 1.6 and M, ~ 3.1 for the Boltzmann and adiabatic elec-
trons, respectively. When the Mach number reaches the maxi-
mum, the soliton begins to reflect some of the upstream ions
and the shock model must include them. Unlike the soliton,
the shock profile resulting from the ion reflection is asymmet-
ric about the reflection point. As shown in Ref. 33, its down-
stream part oscillates. Upstream of the soliton, reflected ions
will create a foot with an elevated electrostatic potential.

Seeking to extend the analytic solution beyond the ion
reflection point, we need a manageable reflection model. At
a minimum, the model should be able to relate the shock
potential ¢,,,, and Mach number M to the number of
reflected ions. Therefore, the model must be kinetic, so one
obtains the shock potential given the shock speed and
upstream ion distribution with a finite temperature. If the ion
temperature upstream was zero (Vy; = 0), the ions would
reflect all at once when the shock Mach number crosses the
point M = \/2e¢,.x/Te- By contrast, if V; # 0, then the
reflection parameter o = figen /Noo < 1, Which is the ratio of
reflected ion density to that of the incident ions far away
from the soliton, will continuously depend on the shock
parameters M and ¢,,,,. The region ahead of the shock filled
with the reflected ions of constant density (foot of the shock)
is mathematically regarded as “infinity” in the treatment of
the main part of the shock transition. There all the relevant

V3 =24 — /U —2¢,
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quantities, such as the electrostatic potential ¢, are consid-
ered asymptotically constant. The shock foot (precursor) will
obviously expand linearly with time after the first ions are
reflected. In considering the main part of the shock transi-
tion, we will count the plasma potential from its value in the
foot, so that we set the potential at “infinity” to ¢ = 0 in this
section. Turning to the transition near the leading edge of
reflected ions in Sec. IV, we will account for the foot poten-
tial ¢; in the solution obtained in this section, Fig. 1.

To describe ion reflection, we use a simple generaliza-
tion of a cold ion distribution upstream that provides an ion
reflection model satisfying the above requirements. So we
use a “box” ion distribution with the finite thermal velocity
defined as Vi = vy — vyt

- 1 L,
(e [}

The normalization of £ implies a unity density of incident
ions far enough from the shock but not farther than the slow-
est particles in the leading group of reflected ions at a given
time, as we discussed earlier. We use the shock frame
throughout this section. It is convenient to introduce a
dimensionless potential by replacing e¢/T, — ¢ and mea-
sure the coordinate in units of Ap = \/T,/4me?n,,, while the

ion velocity in units of the sound speed Cy = +/T,/m;.

Suppose the soliton propagates in the positive x-direc-
tion with a nominal speed U = /2¢,,,, (With respect to the
foot), where ¢, = ¢(0) is the maximum of its potential,
and vi < U < v,. The ion density upstream and downstream
can then be written as follows, Fig. 2:

—Vy < v < =V

v¢(—vz,—v1). M

x<0

ni(¢) = —

Va2 — Vi

V3 =20+ /U -2¢ -

VE R N T

Again, we count the electrostatic potential from its value in
the shock foot. We note that U is not precisely the soliton
velocity but rather a convenient notation for /2¢,,,,, while
the soliton velocity with respect to the foot plasma (Mach
number in this reference frame) is M = (v; +v,)/2. The
soliton speed in the upstream plasma frame can only be
determined when the foot potential ¢, is obtained, Fig. 1. It
is also important to note here that our choice of the simplest
form of ion distribution, Eq. (1), resulting in the ion density
including the reflected ions should lead to the same shock
structure in the limit Vy; — 0 as in the case of, say,
Maxwellian distribution. In the latter case, the ion density in
Eq. (2) would be expressed through the error function.
However, the limit V; — 0 can only be taken after the solu-
tion for the shock profile is obtained.

2V —2¢, x>0, 0<¢p<vi/2 2

x>0, v%/2 < ¢ <U?)2.

FIG. 2. Phase plane of ions at reflection point and propagation of reflected
ion beam accompanied by its further acceleration into the upstream medium
and narrowing its velocity distribution at large x.
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From this point on, our treatment will depend on the par-
ticular electron model, Boltzmannian or adiabatically
trapped electrons. In Subsections II A and IIB, these two
models are considered separately.

A. Boltzmannian electrons

Based on the above definitions, the Poisson equation for
the shock electrostatic potential can be written as follows:

d*¢
7 = (L a)e? = ni(¢), 3)
where
=Y @)
V2 — Vi

is the fraction of ions reflected off the shock, so that the first
term on the r.h.s of Eq. (3) corresponds to the electron contribu-
tion. We have chosen its normalization in such a way as to neu-
tralize the sum of the incident and reflected ions in the foot,
according to their normalization in Eq. (1). We may now inte-

grate Eq. (3) once, also imposing the condition ¢’ (¢,,x) = O.
The resulting equation takes the following form:
1 (dp\*
—|—=) =0 F=(p) = O 5
L) —ow =0t ©

where “+” or “—" sign should be taken for x > 0 and x < 0,
respectively. The functions ® and .# * are given by the fol-
lowing relations:

(3-2¢)"" - (3-0)"

D=(1+a)(e? —eV2) + 3w , (6)
gro 1
3(va—v1)

(U2 —2¢)"7 =2 —2¢)*0(»* = 2¢), x>0

— (2 -2¢)"", x<0,

7

where ¢ is a Heaviside function. These relations are written
for the case U > v, while the opposite case would corre-
spond to the standard soliton solution with no ion reflection
but with finite upstream ion temperature, which we do not

|

F((b_kd)l)_F(d)max_"qbl)_'_i
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consider in this paper. It is convenient to refer to the func-
tions ®* (¢) as to pseudopotentials of anharmonic oscillators
of unit masses, whose kinetic and potential energies corre-
spond, respectively, to the Lh.s. and the r.h.s of Eq. (5).
Here, ¢ represents the oscillator coordinate and x represents
time.*® The shock structure ¢(x) is thus completely deter-
mined by Eq. (5) in a form of an inverse function x(¢) under
an appropriate choice of its branches upstream and down-
stream. In Sec. III, we specify the critical parameters of the
shock profile ¢, and ¢, depending on the upstream ion
temperature and Mach number. Again, by “upstream” we
mean here the shock foot region where ¢ = 0, Fig. 1.

B. Adiabatically trapped electrons

Boltzmann distribution for electrons near the shock that
we considered above is not always the best choice. If they
drive the shock by themselves, the shock may confine them,
at least in part, to the downstream side by trapping in its
potential. The trapped electrons acquire then a flat distribu-
tion, while the free ones maintain their Maxwellian distribu-
tion.'® Hence, the following electron density distribution
replaces the Boltzmann distribution in the Poisson equation
given by Eq. (3):

o F(¢+¢1)
e (1+“)Wl)l—ni(¢)v (8)
where
F(¢) = ePerfer/d + 2/ /x,

while the ion distribution remains the same as in Egs. (2) and
(3). In deriving Eq. (8), we assumed electrons with negative
energy E, = mv?/2 —ed(x) <0 to remain on the down-
stream side of the shock structure, where their distribution f;
is constant, while the rest of the electrons obey the standard
Maxwell-Boltzmann distribution. Apart from the normaliza-
tion factor that accounts for the ion reflection rate o and the
finite shock foot potential ¢, this distribution is identical to
that used by Gurevich in Ref. 16 for collisionless electrons
trapped into a soliton. Similarly to Eq. (5), the first integral
of the Poisson equation can be written as follows:

2
% <%> =®,(¢) + F7 7 (¢) = D, (¢),

where

3ﬁ (d) + ¢1)3/2 - (d)max + ¢1)3/2

(Da(d)) = (1 + OC)

(3 -2¢)"" - (3- 17"

+
3(\/2 — V])

)

() ®

(10)

and 7 * is given by Eq. (7). Again, we have added an integration constant to ensure that d¢)/dx = 0 at ¢ = ¢,,,,. Once the shock
model is defined for the two types of electron distribution, we proceed with the solutions for the respective shock structures.
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Ill. SOLUTION FOR THE MAIN PART OF THE SHOCK
TRANSITION

A. Boltzmannian electrons

An implicit solution for the potential ¢(x) in the regions
xZ0 may be written using Eq. (5) by the following inverse
relations for x(¢):

Prmax /

R I (1
V2o (#)
At the point where ions are about to reflect off the soliton
tip, that is when U = v; (o = 0), two pseudopotentials are
equal, ®" = @~ Therefore, the (soliton) solution remains
symmetric, as it has to be in the case with no ion reflection.
It is selected by imposing an additional constraint on the
pseudopotential ®". Namely, ®*(¢) must have a double
root at ¢ = 0: ®(0) = 0, ®*'(0) = 0 regardless of o being
zero or positive. Note that the second condition, ®*'(0) = 0,
is satisfied automatically via our choice of normalization of
electron contribution, Eq. (3), that ensures charge neutrality
at +00. The condition d¢/dx = 0 at x = co, that amounts to
®" (¢ =0) =0, yields the following nonlinear dispersion
relation for the shock:

) B vg + U3 — 2v? — (v% — UZ)S/2

(1-+a)e2 -1 3(va — 1)

. (12)

Indeed, this is a relation between the shock amplitude
Gmax = U?/2 and its speed (Mach number with respect to
shock foot) M = (v{ + v2)/2, just as in the case of conven-
tional ion-acoustic soliton of Ref. 38. An important differ-
ence, however, is that this relation also includes the ion
reflection coefficient o= (U —vy)/(v2—v;) and the
upstream velocity dispersion Vr7; = v, — vy, through which
the upstream ion bounding velocities v; and v, in Eq. (12)
may always be expressed. In particular,
M=U+ (1/2 — a)Vy;. Assuming that Vy; < U, from Eq.
(12), we obtain

3/2
1 1—
——(ZU)3/2( O()
3 14+«

it 13)

PP =
The Lh.s. of this relation is identical to the soliton dispersion
relation (Lh.s.=0) taken at the ion reflection potential
(Pmax = U?/2). Therefore, the ion reflection does not change
the shock speed with respect to the shock precursor in a
plasma with cold ions upstream, Vy; — 0. Comparing Egs.
(12) with (13), we see how this results from canceling out of
the factor 1 4+ o. However, the shock speed does grow with
the ion reflection rate o with respect to the upstream frame
(since the precursor height ¢, grows as well), which we dis-
cuss later. It is also interesting to observe that the thermal
correction to the shock speed diminishes with an increase in
ion reflection, o« — 1.

Neglecting the r.h.s. of Eq. (13) (cold upstream ions,
Vi — 0, or & — 1) gives the solution for the critical Mach
number U =M, ~ 1.6 For a finite Vy < vi, and
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arbitrary o < o, =~ 1 (see below), we obtain the following
dispersion relation:

3/25,1/2:,1/2
22 (1-a0) M vy
3 (1+a)(M2-1)

UM, — (14)

Turning to the spatial profile of the potential down-
stream (x < 0), from Eq. (5) and Fig. 3, we see that it oscil-
lates between its minimum value ¢, and ¢,,,, = U?/2 that
is given by Eq. (14). Similarly to the above equation for
Omax»> given by Eq. (13), from Eq. (5), we obtain the follow-
ing equation for ¢,;,:

U2 _ gun

o (V% B 2¢min>3/2 - (Uz - 2¢min)3/2 B (V% B Uz)
N 3(1+O€)(V2*V1)

3/2

5)

The solution for ¢,;, simplifies for the cases of weak and
strong reflections. So, for o < 1, using also Eq. (14), we find

M/

VM2 =1

The opposite case of strong reflection, 1 — o < 1, should be
treated with care when the small parameter 1 — o approaches
the thermal spread of incident ions, V7;. First, assuming that
Vri < 1 — o < 1, we obtain

d),N
min —

M2(1 - a)’

d)min = ¢max - 2<1 +MZ>2 :

For smaller 1 — o, we may write

2
Ve (1+M?)

(1—a) VM.

9
¢min = d)max - Z(l - a)VTiM* -

16)

o+

\
0 /q)min (pmax

FIG. 3. Pseudopotentials of “oscillators” described by Eq. (5).
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The last solution cannot be continued to o =1, as @y,
reaches ¢, at

o =o0p~1—2Vr(1+M>)*/M, < 1. (17)

It is not difficult to understand why there is no solution corre-
sponding to complete ion reflection as o, # 1. Indeed, a solu-
tion with all particles reflected from the shock would
nevertheless require a finite density downstream (to neutral-
ize electrons), which could be possible only if the incident
ions had no velocity dispersion (that is why 1 — o, ~ V7; in
Eq. (17)). Therefore, when « increases to o = o, a solution
P (x) = ¢pmax = const establishes downstream (pure shock
transition). Instead of using Eqgs. (12) and (16), this special
solution is easier to find directly by requiring charge neutral-
ity condition fulfilled identically downstream, Eq. (3)

1-— 2U
QU2 = &

= + 1.
14+ o VT,‘(l—OC)

This result, in combination with Eq. (13), yields the critical
value o = o, in Eq. (17). Under this condition, the maximum
potential ¢,,,, = U?/2 is determined by

4v3, (M2 + 1)°

U=M, —
M. M2 —1

(18)

Together with Eq. (14), the latter expression constrains the
range of the shock Mach numbers for 0 < o < o, = 1. These
values of the shock potential and Mach number (~ U) relate to
the upstream region occupied by reflected ions (where ¢p = 0).
This region is located to the right from the leading soliton, but
not farther than the slowest ions out of those that have been
reflected first, Fig. 1. A more precise meaning of this condition
will be given in Sec. IV. Now we turn to the calculation of the
shock parameters for adiabatically trapped electrons.

B. Adiabatically trapped electrons

The calculation of shock characteristics for the adiabati-
cally trapped electrons is similar to that for the Boltzmannian
electrons, but with one significant difference: the foot poten-
tial ¢, explicitly enters the Poisson equation also for the
main part of the shock transition, cf. Egs. (3) and (8).
Therefore, unlike in the Boltzmannian case, where the ion
reflection rate o explicitly enters the shock solution only in
conjunction with the incident ion thermal spread (see, e.g.,
Eq. (14)), in the case of adiabatically trapped electrons the
ion reflection effect is significantly stronger. The foot eleva-
tion ¢, is the largest contributing factor to that. Although, the
latter is also determined by o that we will discuss in Sec. I'V.

Turning now to the shock solution, for its potential
Gmax = U?/2, we obtain from Eq. (9) the following relation:

F(d)max + ¢1) +% |:(¢max + ¢1)3/2 - ;/2:|
)3/2

F(¢y)
3/4 (1-a

29/4
_1_2¢max:_T¢maX 1+o

viZ2 o (19)
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Unlike in the Boltzmann case, where the shock amplitude
Gmax Was given by just a number M?/2 in the limit Vy; — 0,
now ¢,.. depends directly on ¢,. This dependence can be
determined by solving Eq. (19) numerically for Vy; — 0, as
the major contributing factor is ¢, . Fig. 4 shows this solution
in the form of the shock Mach number related to the far
upstream medium and to the shock precursor, where ¢ = 0.
The latter is given by the relation U(¢,) = \/2¢ x> Shown
with the dashed line. As expected, it starts from the value
U =~ 3.1, which is the maximum speed of a non-reflecting
soliton calculated by Gurevich.'® As the ion reflection rate «
increases, so do ¢, (o) and U.

To calculate the shock Mach number in the far upstream
reference frame rather than the foot frame, one has to take
into account the foot potential ¢,. Indeed, the incident ions
first slow down by passing through the potential ¢; before
they hit the leading soliton in the shock structure and specu-
larly reflect off it. The total Mach number (i.e., the absolute
shock speed, again, given for V; — 0) then amounts to

M= 23/2 \/¢max + ¢1/4 - \/2¢max ~ \/2¢max + d)lv (20)

where the last expression is an approximation for ¢,
< 2¢ax Which holds up reasonably well for even a strong ion
reflection. This dependence is shown in Fig. 4 with the solid
line. We see from the last equation that the direct effect of the
foot elevation ¢; on the total Mach number is quite small, so
that in the case of Boltzmannian electrons, where ¢, does
not depend on ¢, explicitly (Eq. (12)) the maximum Mach
number remains close to M,. The dependence of the Mach
number on « is considerably stronger for adiabatically trapped
electrons, where ¢,,,,, explicitly depends on ¢, (o).

Now that we have obtained the shock structure up to the
location of the first reflected ions, we turn to their dynamics.
Obviously, they interact with the front end of the shock pre-
cursor, where the shock potential drops to its upstream value.
Note that depending on the time elapsed from the first reflec-
tion, this potential barrier may have advanced far ahead of the
main part of the main shock structure (first soliton, Fig. 1).
Therefore, our assumption (Sec. II B) about the flat distribu-
tion of adiabatically trapped electrons in the soliton may

5.0
g asf
E =
z e
z ot
g /,/
S 40
=4 a
8 [ /’/ — Upstream Mach (at ¢ =—¢;)
ﬁ // ====Precursor Mach (at ¢ =0)
35
3.0 — - L - L
0.0 0.2 0.4 0.6 0.8

Precursor Potential ¢,

FIG. 4. Solution of Eq. (19) in the limit V7; = 0 shown in the form of the
shock Mach number related to the upstream frame, M, and to the foot ion
reference frames, U = \/2¢,,,, (see text).
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become inconsistent with the Maxwellian distribution of free
electrons. Indeed, part of the electrons passing the main shock
transition is in fact reflected from the front of the shock pre-
cursor and may be significantly cooled in the expanding foot.
Under these circumstances, we restrict our calculation of ¢,
to the case of Boltzmannian electrons, assuming that the con-
dition AV, > AV, discussed in the Introduction applies
throughout the entire shock transition. In fact, we will impose
a stronger constraint on the time variation of the front part of
the precursor in calculating the ion distribution in Sec. I'V. In
Sec. IV, we will relate the foot potential ¢, to o. This relation
provides the shock parameters depending only on the reflec-
tion parameter o, by using Eq. (20) and Fig. 4.

IV. SOLUTION FOR THE ION PRECURSOR

As we have seen, in the case of o > 0, the shock propa-
gates through a foot region with the electrostatic potential
elevated to y = ¢, from its level y = 0 at +oc0. By entering
this area, the incident ions slow down before they encounter
the leading soliton. It is convenient to account for this
change in the shock potential by shifting the variable ¢ used
in Secs. I-1II to y as follows: Yy = ¢ + ¢,. So we now focus
on that part of the shock transition where s varies in the
interval 0 <y < ¢, Fig. 1. From the physics perspective,
one may assume that after an initial propagation of the
reflected beam upstream, a flow at a constant speed and
potential iy = ¢, establishes between the ion-reflecting soli-
ton and the head of the beam. Our consideration of the beam
dynamics below (see, in particular, Appendix) implies that
this assumption is not justified if the beam reflection is not
strictly stationary, so the beam may continue to evolve all
the way through its extension. However, under a stationary
reflection, most of the beam will also be stationary, and only
its head will continue to spread via a self-induced electric
field. In this region, the potential will gradually decrease
from y = ¢, to Y = 0, and the respective electric field will
further accelerate the reflected particles.

There are at least two types of applications where the
energy distribution of reflected ions is critical. The first type
is when the reflected beam impinges on a dense target that
completely absorbs the beam. Here, the spatially averaged
energy distribution of reflected ions is more important than
the local one. The deposited particle energy and, therefore,
the particle penetration depth will decrease until the transient
(more energetic) part of the beam coming from the region
where 0 < < ¢, is absorbed. Then, the stationary part of
the reflected beam, which carries the potential ¢, will main-
tain a constant energy deposition (fixed location of a particle
stopping point). Note that the stopping point is associated
with the so-called Bragg peak of particle energy losses, e.g.,
Ref. 34.

The second application of shock reflected ions is a long-
standing problem of ion injection into the first order Fermi
acceleration, e.g. Ref. 29. Here, more important than the
dynamics of the front-running ions is the process of scatter-
ing of all reflected particles on self-generated waves. This
process occurs in a magnetized shock environment and, for
that matter, at significantly larger scales, such as the Larmor
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radius of reflected ions and beyond. Numerically, this prob-
lem is usually treated using hybrid simulations.®**"'> The
hybrid simulations, however, do not resolve the sub-Debye-
scale phenomena, crucial for the present investigation. We
defer the injection aspect of the reflected ion beam to a future
study.

In describing the pedestal part of the shock transition, it
is natural to use the reference frame in which the stationary
part of the reflected ion beam is at rest. It is also clear that
this part of the shock profile can be described almost inde-
pendently of the main part of the shock transition, presented
earlier in the paper. Then, a matching condition in the region
where ¢ = 0 or, equivalently, iy = ¢, applies. Here, all the
relevant particle groups have a constant density. Using the
plasma neutrality requirement for the Boltzmannian elec-
trons and ions that enter this region at the speed —w from
+00, we obtain

1+
e :i 1)

V1=2¢, /w2’

which, for 2¢,/w? < 1, can be
exp [(1 —w2)¢,] ~ 1 + o Hence

written also as

In(1 + o
¢y = ﬁ 22)
for any O < o < 1. In the current reference frame, the veloc-
ity of the incoming upstream ions is —w ~ —2U, so the
requirement for Eq. (22) to be valid is 2¢; /w? = ¢ /2Prmax
< 1. This condition is warranted by Eq. (22), if o < 1 but,
because ¢, is not large even for «=<1, the approximate for-
mula in Eq. (22) is accurate to within 1% for all 0 < o < 1.
The thermal spread of ions is neglected here. To further
simplify notations, we rescale the spatial variable x here as
follows: X' = (1 — 2¢», /w?)"/*x. This change of variable is
not significant for the sequel, though. Denoting the reflected
ion density by p, we can write the Poisson equation in the
following way:

a*y 1
S 23
e .
A2 T2y p (23)
The limiting values for p are p( = 0) = 0 and
o
Y =) = 24)

VI=2¢, /w2

As before, we assume that the front-running beam particles
already escaped the main part of the shock and have spread
to an area much larger than the Debye length. Hence, the
following “quasi-neutral” version of Eq. (23) applies:

o !
p=e W (25)
The last relation can be used as an equation of state of the
reflected ion gas. Furthermore, at this stage, the problem of
subsequent spreading of the reflected beam lacks any charac-
teristic length. Therefore, as in the case of its gasdynamics
counterpart, the solution should depend only on the variable
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E=x/t

Placing the spreading front edge of the reflected ion beam at
the origin, we obtain the following boundary conditions for
the beam density, its velocity, and plasma potential: p(o0)

= u(=00) = Y(00) = 0, Y(—00) = ¢;, and

p(=o0) = \/TW =P

An additional limitation to this treatment, that uses the parti-
cle energy conservation in Eqgs. (21)—(23), is that the poten-
tial Y should not vary significantly during the crossing time
of incident ions. The reason for such variation is, of course,
the spreading of the reflected ions entering Eq. (23) through
the term p(x, 7). Again, the above limitation is easily fulfilled
as ¢; < w?/2 even for o ~ 1. By neglecting also the ion
pressure, we arrive at the following hydrodynamic equations
for the reflected ions:

(26)

dp 0

L Zpu= 2

o TP 0, (27)
Oou ou oy

where u is the flow velocity of reflected ions in the comoving
reference frame. As we use dimensionless variables intro-
duced in Sec. II for x, u and V), time is now measured in the
units of w;il = \/m;/4neny..

The problem, given by Egs. (23), (27), and (28), has a
close relation to the problem of expansion of one gas into
another (or into vacuum).”’22 Indeed, as we assume the ped-
estal having already spread to a region larger than the Debye
length, we use quasi-neutrality condition, Eq. (25), in place
of the Poisson equation (23). This implies i = y/(p) (simple
wave solution), and the r.h.s. of Eq. (28) corresponds to the
specific enthalpy gradient of the gasdynamics analog of Eqgs.
(27) and (28). Looking for such solution, from Eqs. (27) and
(28), we obtain (see also Appendix for a more general treat-
ment of Egs. (27) and (28))

~1
() e

where

(30)

and p(y), again, obeys the “equation of state” of the
reflected ion gas given by Eq. (25). Eq. (29), in turn, is satis-
fied by the following piecewise continuous solution:

_J e<a<o
‘”‘{0, £>6>0. b

In the expanding wave region &; < & < &, the solution is
given by
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B dlnp 12

Together with Eq. (30), the last equation determines the pro-
file of the expanding wave in the form of &(/)

B & Olnp Jlnp 12
= [ an G- (52 @

By applying the boundary conditions (&) = ¢, and
W (&) =0, for the edges &, of the simple wave, given by
Egs. (31) and (32), we obtain

dlnp\ /2
£ :f( 5 & ) : (34)
V) =g,

4)1 1
¢, :J dy, /aanp' (35)
0

These are the velocities with which the simple wave expands
back into the beam and the upstream plasma, respectively.
From Eq. (30), for the maximum beam velocity (at

Y =0), we obtain up,x ~ 21/¢,. The total speed of the
shock 18 M~ \/2¢+ 1 () K20 Eq. (20)).
Neglecting the upstream ion temperature in Eqs. (14)—(18)
and using Eq. (22), this Mach number can be written as

M~ /M2 4 (1 — 1/4M2) "In(1 + a), which yields M =
Max = 1.8 for « =~ 1 for a Boltzmannian electron distribu-
tion. The maximum reflected beam speed with respect to the
upstream rest frame is V=M + M, + tma =~ 2[M.
++4/In(1 4 a)]. For the adiabatically trapped electrons, the
calculation of M(o) is somewhat more complicated, since

the shock maximum potential ¢,,,, explicitly depends on ¢,
as we discussed in Sec. III B.

max

A. Acceleration of reflected ions

It follows that, even when ions are bouncing off the shock
front, the laminar shock structure persists for up to a maxi-
mum Mach number My,,x. This value is somewhat higher
than the classical limit M = M, =~ 1.6 for the Boltzmannian
electrons (Mmax =~ 1.8) and considerably higher for the adia-
batically trapped electrons, where M, ~ 3.1, Fig. 4. In the
meanwhile, the fraction of reflected particles may approach
almost unity, Eq. (17). At y =0 in Eq. (30), the reflected
beam velocity reaches its maximum. By expanding Eq. (30)
for small o, we obtain 1y, >~ 2\/& which is a factor of v/2
higher than what the front running particles would gain from
the energy conservation after being accelerated from the
shock foot of a height ¢,. The difference is explained by the
expansion of reflected particles.

An equally important aspect of the reflected beam
dynamics is that the beam, while being accelerated by the
self-generated electric field, substantially narrows its veloc-
ity distribution. Indeed, consider the beam temperature evo-
lution during its expansion upstream. As before, we neglect
the internal pressure of the beam in the hydrodynamic
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equations (27) and (28) that describe the flow. But once we
have described the ion beam flow, we may also calculate the
evolution of its temperature in a test-particle regime.
Assuming that the beam expands adiabatically, the equation
for its temperature 7}, takes the following form:

(9Tb 8Tb 81/1

— —+ @ -DTp,=—=0 36

o T T Dl =0, (50)
where 7y is the ion adiabatic index. By combining this equa-
tion with the continuity Eq. (27), we obtain

T,(0) [p(w]“
Tp(¢y) p(¢1) 7

where T, (¢;) is the reflected beam temperature in the foot
region where = ¢, Fig. 1. For the simple “box” model,
T,(¢,) = (v2 — U)*/24. The result shown in Eq. (37) is, as
expected, just a familiar adiabatic law. Asymptotically, the
width of reflected ion beam distribution narrows down to
zero far upstream where y — 0. Note that the local beam
density also vanishes (p — 0) at this point, according to Eq.
(25). We see from Eq. (37) that the most efficient energy
collimation occurs in 1D motion (y = 3), e.g., if there is a
strong magnetic field present.

In reality, the beam energy changes in space (and time)
while it accelerates through the pedestal region, where the
potential 1/ changes between 0 and ¢,;. Therefore, an inte-
grated energy deposition at a given point (target) cannot be
strictly monoenergetic, even if the bulk of the beam is.
Indeed, the head of the beam (which is at iy = 0) escapes the
bulk of it with the speed 2\/(]371 (one may use Eq. (22) for
¢,). However, the density of these fast moving beam par-
ticles is nominally zero, while the bulk of the beam has the
density p;, Eq. (26). Therefore, the net effect of this beam
energy spreading needs to be investigated depending on the
nature of the target. Such investigation is beyond the scope
of the present paper. We merely mention here that from the
perspective of the proton/carbon radiation therapy, for exam-
ple, the beam energy deposition is largely a collective
phenomenon (e.g., Ref. 37 and referenced therein). If so,
then the beam energy density pV7/2 is probably more rele-
vant than the individual particle energy m,-V,% /2. Therefore,
dumping the rarefied head will not necessarily result in a
significant additional spreading of the “hot spot” produced
by the bulk of the beam.

Notwithstanding the above remarks, it is worthwhile to
calculate the velocity spread of the beam. For cold upstream
ions, we may neglect this spread for the bulk of the beam
that carries the potential / = ¢, and calculate the spread for
its head, where 0 <y < ¢, using the approximation
¢, < w?. Defining the beam velocity spread as

(37

Jupdu
Au=——

J pdu

where 0 < u < Upax >~ 24/ ¢, using Egs. (25) and (30), we
obtain for Au the following simple result:
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At = Ui /4 K V.

The beam density p is falling off with its velocity as follows:
1 ) 2
p(u) :Z(l—w )(umax—u) .

One sees that the beam velocity distribution remains rela-
tively narrow despite the acceleration of particles from its
front. Also, the relative contribution to the integrated energy
deposition of the head of the beam can be reduced by
increasing the length of the primary beam; that is the system
length.

V. DISCUSSION AND CONCLUSIONS

A better understanding of ion-acoustic collisionless
shocks, including ion reflection, is required for the operation
of laser-based accelerators'>'82%3435 (and many other appli-
cations, mentioned in passing in the Introduction section).
Turning to the astrophysical applications, by far the most
demanded particle acceleration mechanism, the diffusive
shock acceleration (DSA) is also likely to be fed in by the
shock-reflected particles. Although the DSA operates in
magnetized plasmas, typically at much larger than Debye
scale, the particle reflection can hardly be understood
without understanding the DSA microscopics, to which the
results of the present paper are directly relevant. Identifying
a seed population (“injected” particles) for the DSA in the
background plasma and understanding their selection mecha-
present a genuine challenge for interpreting the
new, unprecedentedly accurate observations of cosmic rays,
e.g., Refs. 1 and 2. These observations point to the elemental
discrimination of particle acceleration that almost certainly
is a carry-over from the injection of thermal particles into
the DSA.?' Operating at the outer shocks of the supernova
remnants, the DSA is the basis of contemporary models for
the origin of galactic cosmic rays.>*%!013-19

The injection has been studied numerically mostly with
hybrid simulations.®>?'321%%  An accurate calculation of
injection efficiency using the results of the present paper
would go far beyond its scope and focus. At a minimum,
such calculation must include the magnetic shock structure.
Conversely, the particle reflection analyzes for magnetized
shocks presented in many publications, e.g., Refs. 14, 23, 41,
and 42, as well as the above-cited hybrid simulations, do not
include the electrostatic structure into the reflection process
self-consistently with electron and ion kinetics. In this paper,
we addressed the questions of how does the reflection affects
the shock speed, its structure, and reflected ions themselves.
We have determined their distribution, given that of the inci-
dent ions and the shock Mach number. These results will,
therefore, be important for the comprehensive DSA injection
models yet to be built. Note that in the case of magnetized
quasi-parallel shocks, the injection seed particles other than
reflected ones have also been considered (see, e.g., Ref. 15
for a recent discussion of the alternatives). In particular, the
thermalized downstream particles have long been deemed to
be a viable source for injection'" (so-called thermal leakage).
One may argue, however, that if such leakage occurs from
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the downstream region within 1-2 Larmor radii off the shock
ramp, the difference between them and reflected particles is
rather semantic from the DSA perspective.31

We further highlight the following findings of this pa-
per: (i) when the soliton Mach number increases to the point
of ion reflection, and the soliton transforms into a soliton
train downstream, this structure persists with the increasing
Mach number until most of the incident ions reflect off the
first soliton.** The reflection coefficient approaches o = o
~1—3.9,/T;/T,, (ii) at this point, the downstream potential
is equal to ¢,,,, = M?/2 =~ 1.26. In addition, the foot rises to
¢y ~In(1+0.)/(1 —1/8Pmax) = 0.77 (for a. — 1), so that
the total shock Mach number approaches M = M, ~ 1.8.
This result is obtained for the Boltzmannian electrons, while
in the case of adiabatically trapped electrons the maximum
Mach number approaches M = M, ~ 4.5, (iii) the laminar
shock structure cannot continue beyond this point.

Based on the numerous PIC simulations, available in the
literature (e.g., Refs. 12, 18, and 24), we may speculate that
when the Mach number exceeds its critical value M,,
obtained in this paper, the shock evolution becomes time
dependent; ions reflect intermittently. One example of such
dynamics, Fig. 5, we adopted from the recent particle-in-cell
(PIC) simulations®* (see also Appendix for a further brief
discussion of this result). For yet higher Mach numbers, the
upstream and downstream flows do not couple together, but
rather penetrate through each other, not being perturbed sig-
nificantly. In a piston driven flow, ions reflect only from the
piston, so the shock does not form. As for the prospects for a
laser-based accelerator, this is probably a favorable scenario
for generating ion beams when the high energy is a priority.
Indeed, the maximum Mach number for a laminar shock,
with sustainable ion reflection from its front, is rather low.
Therefore, ions reflected directly from the piston may be a
better solution.

In this paper, the main part of the shock structure was
resolved exactly, by adopting a simplified kinetic model for
a finite-temperature “box” distribution of upstream ions,
using the shock pseudopotential. Considering 7;/7, as a
small parameter, the number of reflected ions is calculated as
a function of the shock Mach number self-consistently with

V./C; )
6 15
-3
3 _
-2
0 . -1
o
50 150 250 /M

FIG. 5. PIC simulation result from Ref. 24. Shown is the ion phase plane at
twpe = 2800, My = V,/Cy = 2.57; the resulting velocity of the shock is
around 3.8. The color coding corresponds to the ion phase space density
normalized to that of the upstream ions (logarithmic scale).
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the shock foot potential. The dynamics of the reflected ion
beam in the foot is investigated.

To recapitulate the relation of this and earlier studies,
we note that many analyzes were limited to the case of
monoenergetic upstream ions. For that reason, they could not
resolve ion reflection as the incident ions should all reflect at
once, when the peak of wave potential e¢,,,, becomes equal
to the ion energy m;V2 /2. As we pointed out already,
this happens when the Mach number M = Vo /C, reaches
M =M, ~ 1.6 for Boltzmann electrons,38 and M =M,
~ 3.1, for adiabatically trapped electrons.'® Numerical treat-
ments, however, included finite ion temperature and have been
able to address the effect of ion reflection on the shock struc-
ture by using PIC simulations, e.g., Refs. 12 and 24. The ion
reflection alters the shock amplitude and speed, thus impacting
the reflection threshold itself. The most striking result of this
feedback loop, we have studied in this paper, is a pedestal of
the electrostatic potential, built upstream. It changes the speed
of inflowing ions and thus, again, the condition for their subse-
quent reflection from the main shock. To our best knowledge,
this important aspect of the collisionless shock physics has not
yet been studied systematically in PIC simulations.
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APPENDIX: CHARACTERISTIC FORM OF REFLECTED
ION DYNAMICS

By analogy with their gasdynamics counterparts, we
rewrite Egs. (27) and (28) in a form of two Riemann invari-
ants conserved along two families of characteristics. To this
end, we first change the dependent variable in Eq. (27) p—J,
so that this equation rewrites

or . aJ ap\ ' ou
where
dlnp
= . A2
7= [ [ (A2)

By summing and negating Eqs. (28) and (A1), we arrive at
the following characteristic form of them:
OR+ OR +

o T O

(A3)
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with the Riemann’s invariants R+ and the characteristics C+,
respectively, given by

v dlnp
Ri:MiJ d
o1 " ou

(A4)

Therefore, the most general solution of the problem,
described in Sec. IV by Egs. (27) and (28), is determined by
conservation of R+ along the characteristics C+. From
this perspective, the simple wave solution given by
Egs. (31)—(35) corresponds to a decaying discontinuity with
u(x <0)=0and u(x > 0) = u; = u(yy =0) (Eq. (30)). The
initial beam density jump is defined in a similar way, p(x >
0) =0 and p(x < 0) = p,, Eq. (26). Under these initial con-
ditions, the Riemann’s invariant R, = 0 everywhere. Thus,
the initial value problem given by Eq. (A3) significantly sim-
plifies with only R _ # 0, and a single family of characteristics
C_ involved in it. As C_ characteristics diverge from the ori-
gin, the simple wave solution described in Sec. IV emerges,
and it is consistent with the initial conditions specified above.
It is important to emphasize that under more general
initial conditions, the beam dynamics can be much more
complicated. In particular, the flow characteristics generally
intersect. As the beam ‘“hydrodynamics” is truly collision-
less, their intersection will result in a multi-flow state of the
reflected beam. Such states copiously emerge in simulations,
e.g., Refs. 12, 24, and 25, along with laminar reflected beam
flows described in Sec. IV. An illustrative example, taken
from recent PIC simulaltions,24 is shown in Fig. 5. Even
though the shock is super-critical, the quasi-laminar part of
the reflected ion beam, described in this paper, can be easily
identified in the area x > 175. Here, the flat part of the beam
density distribution (175 < x < 200) transitions into an
accelerating, rarefied part at x > 200. Other reflected ion
components in this area stem from later, non-stationary, and
highly intermittent reflection events. Being more energetic,
these ions are catching up with the laminar part at the
moment shown in the figure. Based on the color coding,
however, they are considerably (about 10 times) lower in
phase space density than the main reflected component is.
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